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Abstract
An analysis of electron transport in graphene in the presence of various arrangements of
delta-function like magnetic barriers is presented. The motion through one such barrier gives an
unusual non-specular refraction leading to asymmetric transmission. The symmetry is restored
by putting two such barriers in opposite directions side by side. Periodic arrangements of such
barriers can be used as Bragg reflectors whose reflectivity has been calculated using a transfer
matrix formalism. Such Bragg reflectors can be used to make resonant cavities. We also analyze
the associated band structure for the case of infinite periodic structures.

(Some figures in this article are in colour only in the electronic version)

In a two-dimensional electron gas (2DEG) there is a well
established similarity between ballistic electron transport
through electrostatic potential barriers and light propagation
in geometrical optics [1]. This has been extended to
massless Dirac fermions in graphene [2, 3], where it
was recently established that electron transport in the
presence of an electrostatic potential barrier is analogous
to negative refraction through metamaterials [4, 5]. The
relativistic behavior of graphene electrons also leads to Klein
tunneling [6, 7], where a relativistic particle can tunnel through
a high barrier by the process of pair production, precluding the
possibility of confining it using such potential barriers. Such
confinement is, however, possible using magnetic barriers [8].
Can we understand this behavior of massless Dirac fermions
in the presence of magnetic barriers by comparing it to the
propagation of light? The difficulty in using an optical analogy
is that, unlike the electrostatic potential, the magnetic vector
potential couples with the momentum of the electron.

In this work we show that wavevector dependent tunneling
of massless Dirac fermions through magnetic barriers [9–14]
can be understood in terms of well-known ideas in geometrical
optics. However, the corresponding Snell’s laws are very
different from those of ordinary geometrical optics. We then
carry out this analysis to propose devices such as a Bragg
reflector using a transfer matrix approach and qualitatively
depict how a resonant cavity can be constructed with such

a reflector. Additionally, we comment on the band structure
of electron transport when such magnetic barriers are placed
periodically.

The proposed structure consists of a graphene sheet
placed in close proximity to long magnetic stripes that
produce highly localized magnetic fields, as depicted in
figure 1. Such field profiles can be created using demagnetizing
fields produced at the edges of narrow stripes made with
hard ferromagnetic materials with perpendicular or in-plane
anisotropy. It is possible to make such stripes at various
length scales. Materials such as CoCrPt, used in magnetic
recording, produce field strengths of 1 T close to the
surface with bit lengths ranging from 50 to 100 nm.
Patterned stripes down to 10 nm can be realized using
nanolithography [15]. It is possible to achieve field profiles
at even smaller dimensions using domain walls with widths
in the range of 10–50 nm and magnetic nanostructures down
to 5 nm [16, 17] and 0.15 nm [18] having highly localized
field variations. The particular form of magnetic barrier that
is used in the calculation here can be realized using two
narrow ferromagnetic stripes of perpendicular anisotropy with
appropriately narrow dimensions and magnetized in opposite
directions (figure 1(a)). The same profile can also be achieved
with one ferromagnetic stripe whose magnetization is parallel
to the graphene sheet at a height z0 above it (figure 1(b)).
Such barriers have been used in the literature [9–11] and the

0953-8984/09/292204+08$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/29/292204
http://stacks.iop.org/JPhysCM/21/292204


J. Phys.: Condens. Matter 21 (2009) 292204 Fast Track Communication

Figure 1. Monolayer graphene with ferromagnetic stripes having
magnetizations perpendicular (a) and parallel (b) to the plane. The
magnetic field B produces a magnetic vector potential A. Single
MVP barriers are formed in (a) and (b). Also shown are a double
MVP barrier (c) and a periodic lattice (d).

magnetic field of such structures is

B = B(x, z0)ẑ = B0[K (x + d, z0)− K (x − d, z0)]ẑ.

Here, K (x, z0) = − 2z0d
x2+z2

0
and B0 is a constant dependent on

the aspect ratio of the stripe. Figure 1(a) shows a plot the
profile of such a magnetic field and the corresponding vector
potential for a given value of z0. As the plot shows, such
an inhomogeneous magnetic field can be well approximated
as a delta-function-like magnetic barrier. This approximation
is valid for all the different sized geometries discussed in the
preceding paragraph as long as two length scales are satisfied.

The first is the typical magnetic length �B =
√

h̄c
|e|B , which

is of the order of the width of such magnetic barriers. The
second length scale is dictated by the de Broglie wavelength,
λF, of the electron. The scattering states in the presence of
such barriers are generally characterized by λF ∼ 1/kF, where
kF is the Fermi wavevector. As long as λF is much larger than
the typical width of the magnetic barriers, the electrons will
not see the variation in the vector potential and thus the delta-
function approximation will hold. Accordingly, we use such
delta-function-like barriers in the rest of the paper. This choice
is guided by the fact that it is amenable to simpler mathematical
treatment, thus making the optical analogy more transparent.
We shall, however, point out later that the discussed analogy
with geometrical optics is more general and is applicable for
other types of magnetic barrier with finite width [8].

We use the following magnetic field and vector potential
in the Landau gauge for a magnetic potential barrier [9, 10]:

B = B�B[δ(x + d)− δ(x − d)]ẑ;

Ay(x) = B�B�(d
2 − x2)ŷ.

Since �(x) is the Heaviside step function, we call this a
magnetic vector potential (MVP) barrier.

For massless Dirac fermions in graphene in MVP barriers,
we consider the limit where the electrons at the K and K ′
points are decoupled from each other [19]. This approximation
will break down if the change in the wavevector |K − K ′| �
2kF due to scattering [3]. For the magnetic barriers considered
in this paper, this shift is ∼|1/ lB |. For fields ∼1 T, it is found
that |1/ lB | < 2kF, and thus this approximation holds. Near
each such point, the wavefunction is given by a two-component
spinor and satisfies the equation

vF(πx ± iπy)ψ2,1 = Eψ1,2. (1)

Here, vF is the Fermi velocity (≈c/300) and π = p + e
c A.

Using h̄vF
�B

as the unit of energy such that ε = E�B
h̄vF

, �B as
the unit of the length such that x̄ = x

�B
, sgn(e) = −1 and

ψ = φ(x)eiky y in the Landau gauge, we get

− i

[
∂

∂ x̄
± (ky�B −�)

]
φ2,1 = εφ1,2. (2)

Here, � = 1 for |x | < d and =0 for |x | > d . The above
two coupled equations can be decoupled easily and result in a
Schrödinger like equation of the form

[
− ∂2

∂ x̄2
+ (ky�B −�)2

]
φ1,2 = ε2φ1,2.

In the region −d < x < d electrons see a barrier of height
[ky + sgn(e) 1

�B
]2. The corresponding wavefunctions in any

region of space can be written in terms of a linear superposition
of forward and backward moving plane waves such that

φ1 =

⎧
⎪⎨
⎪⎩

eikx x + re−ikx x x < −d

aeiqx x + be−iqx x |x | < d

teikx x x > d

(3)

φ2 =

⎧
⎪⎨
⎪⎩

s[ei(kx x+φ) − re−i(kx x+φ)] x < −d

s ′[aei(qx x+θ) − be−i(qx x+θ)] |x | < d

stei(kx x+φ) x > d .

(4)

Solutions of the above equations are very different from
those in the presence of a uniform magnetic field, since here
the magnetic field is highly non-uniform and has singular
delta-function-like structures. Also, s and s ′ are given by
sgn(ε) and are both +1 for electrons when only magnetic
fields are present and no electrostatic potentials are applied.
A similar treatment can be done in the presence of an
additional electrostatic potential, in which case both s and s ′
are not necessarily +1 [20]. The wavevector components are
[kx, ky] = kF[cosφ, sinφ] outside the magnetic barrier and φ
is the incident angle for an electron wave. The Fermi energy of
the incident electrons is EF = h̄vFkF. In the dimensionless
form, this is εF = kF�B and this entirely characterizes the
parameters that control the transport by changing the refractive
index of the barrier region. Since the magnetic field does not do
any work, energy conservation gives k2

x + k2
y = k2

F for |x | > d

and q2
x + (ky − 1

�B
)2 = k2

F for |x | < d . Since θ = cos−1(
qx

kF
),

for |x | < d kF sin θ = ky − 1
�B

gives

sin |θ | = sin |φ| − sgn(φ)
1

kF�B
, −π

2
< φ <

π

2
. (5)
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Figure 2. (a) Asymmetric refraction through a single barrier. (b) Refraction through a double barrier where the symmetry in the transmission
is restored. Barrier regions which are denser or rarer in terms of refraction of the wavevector are shaded differently.

The situation has been depicted in figure 2(a). The wave
incident with a positive φ wavevector will bend towards the
normal, whereas for the waves incident with negative incidence
angle the corresponding wavevector will bend away from the
surface normal inside the barrier region. Therefore, Snell’s law
of electron waves in such magnetic barriers is not specular as
it is for light waves on a smooth surface or for the incidence
of electrons on an electrostatic potential barrier [4, 6]. This
unusual refraction can also be thought of as a consequence
of breaking time reversal symmetry in the presence of such
magnetic barriers. When the magnetic field is reversed, the
denser and rarer medium will change sides without changing
the asymmetric transmission.

According to equation (5), when | sin |θ || > 1, θ becomes
imaginary and the wave in the second medium becomes
evanescent. In the language of optics this corresponds to
total internal reflection (TIR). According to figure 2(a), this
will happen when sin |θ | > 1 for −π

2 � φ < 0 and when
sin |θ | < −1 for 0 < φ � π

2 . In the latter case, this requires
the wavevector to be negatively refracted [4] at a sufficiently
high magnetic field before TIR occurs. It also follows that
for a given strength B the magnitude of the critical angle of
incidence |φ| = φc for TIR is higher for 0 < φ < π

2 compared
to the value for −π

2 � φ < 0. Because of TIR the transmission
on both sides of figure 3 drops to 0 beyond a certain value of φ
and this value is lower for negative angles of incidence.

The wavefunctions given in equations (3) and (4) are
similar to those of massless Dirac electrons scattered by an
electrostatic step potential considered in [6]. This is because
the MVP barrier creates a momentum dependent step potential
of [ky + sgn(e) 1

�B
]2. Continuity of the wavefunction at the

boundaries of the MVP barrier can be used to calculate the
transmission coefficient as

t = 2ss′e−ikx D cosφ cos θ

ss′[e−iqx D cos(φ + θ)+ eiqx D cos(φ − θ)] − 2i sin qx D
.

(6)

Here D = 2d . Thus, the transmission coefficient t ,
transmittance T = t∗t and reflectance R = 1 − T have same
expressions as for electrostatic potentials in [6].

There are, however, key differences. For an electrostatic
barrier, as φ → −φ, θ → −θ . For a magnetic barrier, because
of equation (5), this is not the case. Thus, the same equation (6)
gives symmetric transmission for an electrostatic potential
in [6] and asymmetric transmission here. For high electrostatic
barriers, such that V � EF , the wavevector is given by

qx =
√
(EF −V )2

h̄2v2
F

− k2
y , which is real. The corresponding

transmittance for electrostatic potentials is

T = cos2 φ

1 − cos(qx D) sin2 φ
(7)

and is 1 at φ = 0. This exhibits Klein tunneling for massless
Dirac fermions [6]. For the magnetic barrier, 1

kF�B
∝ √

B .
However, unlike the electrostatic field case, application of a
magnetic field changes both components of the wavevector but
not the energy. At high magnetic field, q2

x = k2
F − (ky −

1
�B
)2 = −κ2 < 0. As discussed, this leads to TIR and

not Klein tunneling. In figure 3, the magnitude of critical
angle beyond which TIR occurs is lower for a higher magnetic
field. Then, a stronger MVP barrier leads to higher reflections
as opposed to complete transmission at normal incidence by
a high electrostatic potential barrier. A similar situation is
encountered with other forms of magnetic barrier [8, 21].

Complete transmission only occurs for qx D = nπ in
equation (6). This corresponds to resonant tunneling for Dirac
electrons and happens in the same way as for non-relativistic
electrons, appearing as a number of peaks in the plots in
figure 3. The number of such tunneling peaks increases with
barrier width for both MVP barriers and electrostatic barriers.

Recently, Masir et al [13, 14] considered the problem of
transport through magnetic barriers including the single MVP
barriers discussed here. They have also compared their results
with similar transport for non-relativistic electrons having a

3
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Figure 3. Polar plot of T versus φ for single MVP barriers of widths (a) 100 nm and (b) 500 nm. Blue (thick) = 0.1 T with lB = 81 nm,
Black (thin) = 3 T with lB = 14.8 nm.

parabolic spectrum and found that there are a larger number of
resonant tunneling peaks for massless Dirac fermions and they
are also more pronounced. However, the structures discussed
in [13, 14] give only asymmetric transmission.

To get symmetric transmission out of such a barrier, two
such single MVP barriers could be placed side by side but
oppositely oriented, as depicted in figure 1(c). The magnetic
field creating such a barrier is

B = Bz(x)ẑ = B�B[δ(x + d)+ δ(x − d)− 2Bδ(x)]ẑ.

We again consider energy conservation in medium 1 (−d <

x < 0) and medium 2 (0 < x < d), which gives

q2
1,2 +

(
ky ∓ 1

�B

)2

= k2
F;

sin |θ1,2| = sin |φ| ∓ sgn(φ)
1

kF�B
.

(8)

The angle if incidence is −π
2 < φ < π

2 and the angle of
refraction is θ1 and θ2 in media 1 and 2 respectively. The
absolute value of the relative refractive index of region 1 with
respect to region 2 on the left side of the surface normal is just
the inverse of that on the right side of the surface normal and

can be combined in the following expression:

|1n2| = sin |θ1|
sin |θ2| = sin |φ| − sgn(φ) 1

kF�B

sin |φ| + sgn(φ) 1
kF�B

. (9)

Thus, for such double MVP (DMVP) barriers, the wavevector
bending towards (away from) the surface normal in the first
half of the barrier bends away from (towards) the surface
normal in the second half of the barrier, as shown in figure 2(b).
This will achieve symmetric transmission through such a
barrier as demonstrated in figure 4. Critical angles of incidence
beyond which TIR will occur for positive and negative φ will
also be interchanged when going from the first to the second
barrier region. However, at higher B fields, TIR will occur at
both regions of the barrier. Consequently, the total reflectivity
of the barrier increases, as can be seen by comparing figures 3
and 4.

Very recently, a similar problem of transport was
considered but for finite-width magnetic barriers [22]. The
relevant results in that work are similar to the present case of
delta-function barriers. This suggests that the conclusions for
symmetric and asymmetric transmission continue to hold true
for finite-width barriers as well.

Practical devices such as Bragg reflectors can be made by
exploiting the high reflectivity of DMVP barriers to manipulate
electrons, as will be discussed later. Such structures, if

4
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Figure 4. Polar plot of T versus φ for DMVP barriers of widths (a) 100 nm, (b) 500 nm. Blue (thick) = 0.1 T with lB = 81 nm, Black
(thin) = 3 T with lB = 14.8 nm.

realized, could also be very useful for confining carriers in
desired areas in graphene and away from edges, where edge
states could adversely affect transport.

To calculate transmittance for DMVP barriers, we write
the wavefunction in the same way as in equations (3) and (4):

φ1 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eikx x + re−ikx x x < −d

aeiq1x + be−iq1 x x ∈ [−d, 0]
ceiq2x + de−iq2 x x ∈ [0, d]
teikx x x > d

(10)

φ2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s[ei(kx x+φ) − re−i(kx x+φ)] x < −d

s1[aei(q1x+θ1) − be−i(q1x+θ1)] x ∈ [−d, 0]
s2[cei(q2x+θ2) − de−i(q2 x+θ2)] x ∈ [0, d]
stei(kx x+φ) x > d .

(11)
The corresponding sign factors associated with φ2 in these
regions are s1 and s2 and are both 1. The transmittance
and reflectance can now be easily computed by imposing the
continuity conditions on the above functions at the locations
of the barriers, namely at x = −d, 0, d . We can express the
transmittance and reflectance in a compact form by introducing
A = e−ikx x and B1,2 = e−iq1,2 x to define the following matrices:

MA =
[

A 0
0 A∗

]
, Mθ1,2,φ =

[
1 1

eiθ1,2,φ −e−iθ1,2,φ

]

Ms,s1,s2 =
[

1 0
0 s, s1, s2

]
= I, MB1,2 =

[
B1,2 0

0 B∗
1,2

]
.

Here I is the unit matrix and

M−1
A = M∗

A; M−1
B12

= M∗
B12
. (12)

The solution of these continuity equations can then be written
as

[ 1 r ]T = M∗
A Mφ

−1[Mθ1 MB1 M−1
θ1

Mθ2 MB2 M−1
θ2

]MφMA∗ [ t 0 ]T .

To understand the above formulae, we introduce the transfer
matrix through a DMVP barrier:

TDMVP = Mθ1 MB1 M−1
θ1

Mθ2 MB2 M−1
θ2
.

We can interpret M−1
φ Mθ1 as the phase shift at the first

boundary, M−1
θ2

Mφ as the phase shift at the last boundary and
M−1
θ1

Mθ2 as the phase shift at the barrier at x = 0. Thus, we
can rewrite the above equation as

[ 1 r ]T = M∗
A Mφ

−1TDMVP MφMA∗ [ t 0 ]T . (13)

The resulting two equations can be solved to yield the
transmittance through DMVP barriers, which has been plotted
in figure 4.

We shall now discuss similarities between transport of
massless Dirac fermions through MVP barriers and electro-
magnetic propagation in periodic stratified media [23, 24] as

5
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Figure 5. cos(K D) versus φ for an infinite periodic lattice with
d = 100 nm showing evanescent (dashed) and propagating (solid)
Bloch waves. For comparison with earlier plots, φ is still used.

well as Dirac fermions in periodic electrostatic potentials [25].
In real structures, there will only be a finite number of barri-
ers and the lattice translational symmetry will break down at
the boundary. To simplify the analysis, we assume that the
DMVP barrier structure can be repeated infinitely. We con-
sider each unit cell of size D = 2d . The nth cell is given by
(n − 1)D < x < nD. In the αth part of the given unit cell, the
wavefunction is

φ1 = aαn eiqn
αx (x−nD) + bαn e−iqn

αx (x−nD)

φ2 = sαn [aαn ei[qn
αx (x−nD)+θα ] − bαn e−i[qn

αx (x−nD)+θα ]].

Here, α = 1, 2, a1
n = an, b1

n = bn, a2
n = cn, b2

n = dn, qn
1x =

q1, qn
2x = q2. The exponential factor e−inD reveals the lattice

translational symmetry, which is not present for isolated single
and double barrier structures. Imposing continuity at both
interfaces of the nth unit cell gives

Ms2,n−1 Mθ2

[
cn−1

dn−1

]
= Ms1,n Mθ1 MB1

2

[
an

bn

]

Ms1,n Mθ1 MB1

[
an

bn

]
= Ms2,n Mθ2 MB2

[
cn

dn

]
.

(14)

Imposing the Bloch condition gives the band structure from the
following eigenequations

[
cn

dn

]
= eiK D

[
cn−1

dn−1

]
=

[
K11 K12

K21 K22

] [
cn−1

dn−1

]

where K is the Bloch momentum and the matrix elements Ki j

can be calculated from equation (14) as
[

K11 K12

K21 K22

]
= (Mθ2 MB2 )

−1 Mθ1(Mθ1 MB1)
−1 Mθ2 .

This is the same as T −1
DMVP permuted. Unitarity gives det Ki j =

1, yielding the eigenvalue equation

K (φ, B) = 1

2d
cos−1

[
1

2
Tr(Ki j)

]
.

The condition | 1
2 Tr(Ki j )| < 1 corresponds to propagating

Bloch waves, whereas | 1
2 Tr(Ki j)| > 1 leads to evanescent

Figure 6. ε/εF versus kylB for an infinite periodic lattice with
d = 100 nm. Here, εF is the Fermi level for λF = 50 nm.
(a) B = 0.1 T, and (b) B = 3 T.

Bloch waves that correspond to forbidden zones in the band
structure. Such band structures have previously been studied
for many problems including condensed matter systems,
optics [23, 24] and relativistic quarks [25]. We plot in figure 5
the value | 1

2 Tr(Ki j)| as a function of the incident angle φ for
different B values. A forbidden region appears at φ = 0 at
higher B due to the larger difference between the refractive
indices of adjacent regions.

Figure 6 gives the band structure for two different B field
values. The most prominent feature of the band structure
for the present case is the presence of larger forbidden zones
with increasing magnetic field. Such band structures were
earlier analyzed for non-relativistic electrons [10, 26], where
parabolic spectra were observed. In comparison, in the present
case, for low field (figure 6(a)) the forbidden region shrinks
substantially whereas for higher field (figure 6(b)) there are
large forbidden regions. Similar to the parabolic spectrum, the
lower energy bands are of lower width and the higher bands are
larger in width.

We shall now modify the above result of infinite periodic
barriers to analyze a finite chain of DMVP barriers that make
a Bragg reflector. A Bragg reflector can be formed by
superposing n such DMVP barriers side by side. We shall
briefly describe how the transmittance and reflectance of such
a reflector can be calculated using a transfer matrix formalism.

6
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Figure 7. Reflectance versus φ through a Bragg reflector with
different periods of DMVP barriers of d = 100 nm and B = 0.1 T.

The magnetic field for a Bragg reflector placed symmetrically
around the origin can be written as

B = Bz(x)ẑ = B�B[δ(x + nd)+ δ(x − nd)

+
n−1∑

p=1−n

(−1)p+n2δ(x − pd)]ẑ. (15)

The series of wavefunction solutions in the various regions are
linear combinations of right and left moving waves similar to
the ones given earlier in equations (10) and (11) for one DMVP
barrier. To solve this set of equations, we proceed as earlier
using continuity of the wavefunction at the magnetic barriers
at x = pd,−n � p � n. Just as equation (13) describes
the solution for one DMVP barrier, the solutions for n DMVP
barriers can be written in matrix form as

[ 1 r ]T = (MA
−1)n M−1

φ T n
DMVP Mφ(MA∗ )n [ t 0 ]T . (16)

Here, we have used equation (12) and TDMVP is just the transfer
matrix through a DMVP barrier. We can again interpret
M−1
φ Mθ1 as the phase shift at the first boundary and M−1

θ2
Mφ as

the phase shift at the last boundary. These two boundaries are
special since these are the interfaces of the magnetic medium
with the non-magnetic region. What appears in the middle
is the transmission through DMVP barriers repeated n times.
A representative plot is given in figure 7. As can be seen, a
practical Bragg reflector with a high enough reflectance can be
realized with just a few periods of DMVP barriers. A Bragg
reflector with large n is broadly similar to an infinite periodic
lattice. Particularly at low B (0.1 T) around φ = 0, there is
high transmission and R = 0 for both structures. Similarly, at
high B (3 T), there is strong suppression of transmission near
φ = 0 in both cases.

The higher reflectance of a Bragg reflector will strongly
suppress transport. We define the average transmission as
transmittance T (φ) multiplied by the x-component of velocity
integrated over all angles of incidence for a given B and d such
that

〈T (B)〉 = 2vF

∫ π
2

0
dφ cosφT (φ). (17)

Figure 8 plots 〈T (B)〉 for various B and d and shows that
transmission is strongly suppressed with increased magnetic
field, and this happens within a few periods of the Bragg

Figure 8. Variation of current 〈T (B)〉 through a Bragg reflector with
period n. B = 0.1 T (�), 1 T (∗), 3 T (��) and d = 100 nm.

Figure 9. Bragg reflectors with MVP barriers used as a magnetic
waveguide (a), and as resonant cavities (b)–(d).

reflector. The above formula, when generalized for a range of
energy levels, leads to the conductance of the structure [13, 22],
which could be measured experimentally.

We have thus shown that reflectance can be controlled by
suitably modifying the strength and locations of the magnetic
barriers and thereby changing the refractive index of the
intervening medium in a novel manner. This principle could
be the basis of more elaborate structures depicted in figure 9.
In a magnetic waveguide (figure 9(a)), reflection must be high
at the desired propagation angles and could be manipulated by
changing the magnetic field. For the resonant cavity shown in
figure 9(b), high reflection is needed near normal incidence.
Geometries such as three-mirror or four-mirror cavities could
be used for high reflection at other angles.

To conclude, we have shown that electron transport
through MVP barriers in graphene can be understood in terms
similar to light propagation in periodic stratified media. The
formalism developed in this paper and the optical analogy
can also be helpful in understanding transport for non-
relativistic electrons, for which transport through similar
magnetic barriers has been previously studied by several
researchers such as [13, 27–29]. The formalism describes
transport in the ballistic regime, which corresponds to the case
of pristine, low-doped graphene. This picture will be modified
when the effects of disorder and electron–electron interactions
are included.

7
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Using these concepts, practical devices such as Bragg
reflectors for manipulating Dirac electrons in graphene can
be made. Such barriers suppress Klein tunneling, thereby
achieving confinement in graphene which can be seen through
strong suppression of transmission of electrons.

We thank G Baskaran, V Fal’ko, C-H Park and F M Peeters for
useful comments. The authors acknowledge financial support
by IRD Unit, IIT Delhi.
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